Re: [推理] 富翁的遺產

看板puzzle (益智遊戲 - 數獨,拼圖,推理,西洋棋)作者 (喵貓)時間14年前 (2010/10/23 15:52), 編輯推噓8(804)
留言12則, 7人參與, 最新討論串2/19 (看更多)
※ 引述《weselyong (Wesely翁)》之銘言: : 今天早上聽同學講的 : 我不知道有沒有OP耶... : 請再告訴我~ : ****************分隔線******************* : 有一個非常富有的老翁臨死前把他的全部財產分成兩張支票 : 要給他兩個兒子,其中一張的面額是另一張的兩倍。 : 但是支票分別放在信封裡面。 : 老富翁說: : 「你們看過之後可以決定要不要交換,前提是對方還不知道你這張的數字是多少的時候」 : : 老大看到他拿到一千萬之後OS: : 他那包比我大的機率是0.5,可能有兩千萬 : 比我小的機率是0.5,可能有五百萬 : 那我跟他換之後的期望值應該是1250萬! 比我的1000萬多!當然換! : 弟弟看到他拿到500萬之後也 OS一發: : 哥哥可能拿到1000萬,機率是0.5 : 也可能只有250萬,機率是0.5 : 那我跟他換的期望值是 500 + 125 = 625萬!比我的500萬多!當然換! : 很明顯的其中必有詐 : 他們錯了嗎? : (我不知道答案喔XDD 或者說我不確定我答案是對的) 這題維基百科裡有... http://en.wikipedia.org/wiki/Two_envelopes_problem 1. I denote by A the amount in my selected envelope. 2. The probability that A is the smaller amount is 1/2, and that it is the larger amount is also 1/2. 3. The other envelope may contain either 2A or A/2. 4. If A is the smaller amount the other envelope contains 2A. 5. If A is the larger amount the other envelope contains A/2. 6. Thus the other envelope contains 2A with probability 1/2 and A/2 with probability 1/2. 7. So the expected value of the money in the other envelope is {1 \over 2} 2A + {1 \over 2} {A \over 2} = {5 \over 4}A 8. This is greater than A, so I gain on average by switching. 9. After the switch, I can denote that content by B and reason in exactly the same manner as above. 10. I will conclude that the most rational thing to do is to swap back again. 11. To be rational, I will thus end up swapping envelopes indefinitely. 12. As it seems more rational to open just any envelope than to swap indefinitely, we have a contradiction. 關鍵大致是兩個式子的"A"是不同情形下無法運算, 或是 Devlin writes: To summarize: the paradox arises because you use the prior probabilities to calculate the expected gain rather than the posterior probabilities. As we have seen, it is not possible to choose a prior distribution which results in a posterior distribution for which the original argument holds; there simply are no circumstances in which it would be valid to always use probabilities of 0.5. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.24.179

10/23 17:08, , 1F
好多英文@@
10/23 17:08, 1F

10/23 17:45, , 2F
簡單說就是那個1/2機會是事前機率
10/23 17:45, 2F

10/23 17:45, , 3F
不能拿來估計事後(交換後)的值
10/23 17:45, 3F

10/23 18:21, , 4F
哇!謝謝你,原來是經典哪
10/23 18:21, 4F

10/23 19:08, , 5F
雖然不是很懂 但謝謝L大的解釋 :-)
10/23 19:08, 5F

10/23 21:12, , 6F
那可以請問這事後機率應該是多少?怎麼求出來的呢?
10/23 21:12, 6F

10/23 22:57, , 7F
這不叫事後機率,貝氏定理是事後機率。L兄說的是事後值
10/23 22:57, 7F

10/24 01:55, , 8F
求不出來, 你要知道富翁遺產總值的機率分布
10/24 01:55, 8F

10/24 01:56, , 9F
只要兩兄弟對這件事有同樣的 prior 就不會有兩人都願意
10/24 01:56, 9F

10/24 01:56, , 10F
換的情況
10/24 01:56, 10F

10/25 00:02, , 11F
這應該是賽局理論的東西吧
10/25 00:02, 11F

10/25 08:30, , 12F
可是感覺比較不賽局耶,因為對方也一定想換的
10/25 08:30, 12F
文章代碼(AID): #1CmfGcuX (puzzle)
討論串 (同標題文章)
本文引述了以下文章的的內容:
以下文章回應了本文
完整討論串 (本文為第 2 之 19 篇):
文章代碼(AID): #1CmfGcuX (puzzle)