Re: [推理] 富翁的遺產
看板puzzle (益智遊戲 - 數獨,拼圖,推理,西洋棋)作者asdinap (asdinap)時間14年前 (2010/11/01 04:12)推噓5(5推 0噓 33→)留言38則, 5人參與討論串11/19 (看更多)
不好意思 老大 我還是有大問題
首先說給大家知道也不怕漏氣 我確實沒學過事後機率(不過倒是有聽過)
接下來我想說的是 我對原題中的詐或矛盾的定義
就是 流動與兩人之間的金錢交換不可能對雙方都有利
而以原題的算法 進行交換後 卻對雙方都有利
我說的不可能對雙方都有利 就像是賭博中的兩人對賭的賭局
不可能兩人都贏 這有別於一般說的雙贏局面
雙贏必定是三者以上參與中的兩人獲利 對該兩人來講 是雙贏
當兩人進行錢的賭局或某種策略交換行為時 並且錢的流動只在這雙方之間
則兩人的利益總和應該為0 一人虧 另一人就賺的意思 不可能有兩人都贏或都輸
而原題就是如此 交不交換的行為 只造成兄弟兩人金錢上的流通
所以對此行為引起的後果應該要利益總和為0
※ 引述《terrorlone (要努力成為偉大的學者)》之銘言:
: 也就是說,假如我們來玩這樣的一個遊戲:
: 現在有三堆錢分別是 7.5 億,15 億跟 30 億,
: 我「完全隨機地」從三堆中選出一堆,按照 1:2 的比例分成兩袋,
: 你跟你兄弟「完全隨機地」各拿一袋。
: 假如你拿到的那一袋裝著 10 億(但你兄弟的不知道),
: 請問你要不要換?
: 在這個遊戲中,如果你說你要換,那你答對了。
: 因為如果這個遊戲多玩個幾次,那麼在所有你拿到的袋子裝著 10 億的那幾次當中,
: 你的確會整體來說提升獲利。
: 有趣的是如果我把這個遊戲的後兩行改成
: 「假如你兄弟拿到的那袋裝著 5 億(但你的不知道),
: 請問他該不該換?」
: 那麼答案也會是肯定的,他也應該要換,
: 因為長期下來在他拿到 5 億的那幾次當中他也會整體獲利沒錯。
: 所以的確在題目給予的條件之下,你跟他在不知道對方的錢的情況下,都會獲利!
: 也就是說「一個不能雙贏的決策遊戲當中有一種決策對兩人都有利」
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
這句話我認為是絕不可能發生的 也是我對原題矛盾的定義
請看這個舉例的遊戲 為何能雙贏 這是因為分開玩 而不是兄與弟玩
拿到10億 有可能換到 5 或 15 所以才有可能獲利
拿到 5億 有可能換到 2.5 或 10 所以也有可能獲利
因此看起來兩人都贏 但這是兄與三堆錢 及 弟與三堆錢 分別的遊戲中
兄與弟進行換 使得 兄與弟都從三堆錢中獲利
(相當於兩人對莊家 兩人進行一決策 都從莊家那贏錢)
並非兄弟兩人之間的互換
若是兄弟兩人之間的互換 不管進行幾百次 拿到10億與拿到5億的兩人交換
也不會雙贏 10億的只會輸 5億的只會贏 總合還是沒輸沒贏
: 這種事情在上述的特殊情境之下的確有可能發生,並不是真的一定矛盾。
我要說的是 這並不算是特殊情境 只不過 這是因為並非兩人對局
如果有任何 利益交換流通只在兩人之間 卻能讓兩人都獲利雙贏的例子
請各位大大一定要舉例來教訓一下小弟的無知
: 結論:
: 要去談「換信封的決策到底正不正確」,是需要根據總資產的機率分配來判斷的,
: 在完全沒有掌握任何總資產情報的情況下,
: 我們沒有辦法說那樣的決策在給予的情況下到底正不正確。
對於這個結論內容 小弟也有意見
說到機率 就是對[不知]的事情的預測 才會說到機率
對於同一件事 知道越多情報資訊的人 其預測正確的機率越高
前面有個大大舉例說 明天飛彈只有打與不打過來兩種可能
難道打來與不打來會各1/2嗎
當沒有任何情報 不知現在兩國關係 現在是戰爭中還是和平中
的確是打來與不打來會各1/2
大家會覺得這是傻話很可笑的吧
不過你們並不是在笑機率的判斷傻
是在笑人傻 不知國際政治與軍事等諸多情報
是[無知,不知情報]這事在可笑,在傻
在完全沒任何情報下 對於只有兩種可能的事 判斷各1/2
這個想法我認為是很不傻的
並且從此篇原po各個例子陸續下來 得到的結論 應該是掌握總資產情報越多
越有助於判斷換與不換何者得利較好
但是 完全沒有任何情報下 我們還是可以判斷決策到底好不好
頂多就是 換不換都一樣 換了沒較好 也沒較差
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.243.217.110
※ 編輯: asdinap 來自: 111.243.217.110 (11/01 04:18)
→
11/01 07:06, , 1F
11/01 07:06, 1F
→
11/01 07:07, , 2F
11/01 07:07, 2F
→
11/01 07:07, , 3F
11/01 07:07, 3F
→
11/01 07:09, , 4F
11/01 07:09, 4F
→
11/01 07:11, , 5F
11/01 07:11, 5F
→
11/01 07:11, , 6F
11/01 07:11, 6F
→
11/01 07:12, , 7F
11/01 07:12, 7F
→
11/01 07:13, , 8F
11/01 07:13, 8F
→
11/01 07:14, , 9F
11/01 07:14, 9F
→
11/01 07:14, , 10F
11/01 07:14, 10F
→
11/01 07:16, , 11F
11/01 07:16, 11F
→
11/01 07:17, , 12F
11/01 07:17, 12F
→
11/01 07:17, , 13F
11/01 07:17, 13F
→
11/01 07:17, , 14F
11/01 07:17, 14F
→
11/01 07:17, , 15F
11/01 07:17, 15F
→
11/01 07:17, , 16F
11/01 07:17, 16F
→
11/01 07:17, , 17F
11/01 07:17, 17F
→
11/01 07:18, , 18F
11/01 07:18, 18F
→
11/01 07:20, , 19F
11/01 07:20, 19F
→
11/01 07:21, , 20F
11/01 07:21, 20F
→
11/01 07:21, , 21F
11/01 07:21, 21F
→
11/01 07:22, , 22F
11/01 07:22, 22F
→
11/01 07:26, , 23F
11/01 07:26, 23F
→
11/01 07:26, , 24F
11/01 07:26, 24F
→
11/01 07:27, , 25F
11/01 07:27, 25F
→
11/01 07:27, , 26F
11/01 07:27, 26F
→
11/01 07:29, , 27F
11/01 07:29, 27F
→
11/01 07:30, , 28F
11/01 07:30, 28F
推
11/01 09:45, , 29F
11/01 09:45, 29F
推
11/01 19:11, , 30F
11/01 19:11, 30F
→
11/01 23:43, , 31F
11/01 23:43, 31F
→
11/01 23:43, , 32F
11/01 23:43, 32F
推
11/02 00:16, , 33F
11/02 00:16, 33F
推
11/02 18:55, , 34F
11/02 18:55, 34F
→
11/02 18:57, , 35F
11/02 18:57, 35F
→
11/02 20:07, , 36F
11/02 20:07, 36F
推
11/03 00:48, , 37F
11/03 00:48, 37F
→
11/10 02:00, , 38F
11/10 02:00, 38F
討論串 (同標題文章)
本文引述了以下文章的的內容:
7
11
以下文章回應了本文 (最舊先):
0
1
2
12
完整討論串 (本文為第 11 之 19 篇):
1
13
8
12
0
3
9
16
3
7
1
1
2
5
1
1
7
11
puzzle 近期熱門文章
PTT遊戲區 即時熱門文章
7
17