Re: [問題] 是男孩的機率

看板puzzle (益智遊戲 - 數獨,拼圖,推理,西洋棋)作者 (易懷)時間18年前 (2007/11/26 13:50), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串4/4 (看更多)
※ 引述《rehearttw (易懷)》之銘言: : ※ 引述《puzzlez (耶!事情告一段落)》之銘言: : : 以下有兩個有關機率的計算題,請考慮清楚之後給出正確的答案: : : 1‧A氏有兩個小孩,已知至少有一個是男孩,那麼另外那個同樣是男孩子的機率有多少? : : 2‧B氏有兩個小孩,較大的那個是男孩,則較小的那個孩子為男孩的機率為何? : : puzzlez : : 2007/11/25 : 要考慮樣本空間,即元素機率均相等的集合 : 設較大的孩子是 a,較小的孩子是 b, a,b 屬於集合 {X,Y},X 是女的、Y 是男的 : 樣本空間元素是 (a,b) : (這跟丟骰子、卜卦是一樣的,就算一樣,也視為不同) : 樣本空間 S = { (X,X) , (X,Y) , (Y,X) , (Y,Y) },四元素機率均相等 : 第一題 : 條件機率 : 已知至少有一個是男孩:事件 A = { (X,Y) , (Y,X) , (Y,Y) } : 兩孩子都是男孩:事件 B = { (Y,Y) } : 機率 P(B|A) = P(B交集A) / P(A) = 1 / 3 若敘述改為:「隨意抽取一人,為男孩,則另外一人也是男孩的機率」則為 1/2 這個部分的解釋為 抽取到那一個男孩是哪一個? 條件機率樣本空間:{ (Xa,Ya) , (Yb,Xb) , (Yc,Yd) } 抽到的人可能為 Ya、Yb、Yc、Yd 四人機率均等(非三個樣本點機率均等) 則另外一人也是男孩為四種中的兩種,故 2/4 = 1/2 -- rehearttw 許老師(Reheart-易懷),愛生公式,愛胡思亂想 自 1980 年摸魔術方塊,1981 年學基本公式,2006 年學 CFOP 個人魔術方塊網頁 http://rubiks.tw/~reheart/Rubiks-cube.htm 縮網址:http://kuso.cc/0$fg (95/4/7更新、95/6/28改版、95/12/12換址) 益智玩具:http://rubiks.tw/~reheart/puzzle.htm 縮網址 http://kuso.cc/1l01 個人網頁:http://kuso.cc/KfE 請多多指教! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.71.236.141

11/27 06:05, , 1F
總覺得有個地方我就是想不透,不過先謝謝老師詳細的解說!
11/27 06:05, 1F
文章代碼(AID): #17IbwXZj (puzzle)
討論串 (同標題文章)
文章代碼(AID): #17IbwXZj (puzzle)