[問題] 小明買糖

看板puzzle (益智遊戲 - 數獨,拼圖,推理,西洋棋)作者 (快樂!移民日本!夢想成真!)時間11年前 (2014/07/11 20:31), 11年前編輯推噓4(4020)
留言24則, 5人參與, 最新討論串1/1
小明買糖 小明身上通通都是一塊錢跟百元鈔票.總共是x元.現在身上沒糖. 老闆說:現在有兩種方案可以買到糖. 第一種:你一次給我一塊錢.我一次給你一顆糖. 第二種:你一次給我一張百元鈔票.我就給你"你身上現有糖果數量的20%". (舉例來說.假設小明身上有一千顆糖.再給老闆一張百元鈔.老闆必須給小明兩百顆糖) 小明該如何分配這x元.才能買到最多糖? -- 如果我的文章有哪邊不小心違反規定.請告知我. 我一定會立即回來修正.請先不要急著刪除文章.感謝大家! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.229.2.180 ※ 文章網址: http://www.ptt.cc/bbs/puzzle/M.1405081860.A.7CE.html

07/11 22:50, , 1F
把一元通通花光光 再給一百元鈔
07/11 22:50, 1F

07/11 22:53, , 2F
設 m 是 x 除以 100 的尾數,即 m = x % 100
07/11 22:53, 2F

07/11 22:53, , 3F
那在買到500+m顆之前都用方案一,滿500+m顆後都用方案二
07/11 22:53, 3F

07/12 09:10, , 4F
一二樓說的好像是不同情況下的最佳解
07/12 09:10, 4F

07/12 13:39, , 5F
不管任何情況,都是1F說的那樣處理才能得到最多糖吧,因為就
07/12 13:39, 5F

07/12 13:40, , 6F
身上只有一塊和100塊,當然是先花光1塊,再花100,就能得到最
07/12 13:40, 6F

07/12 13:40, , 7F
多顆,無論m為多少不是嗎?
07/12 13:40, 7F

07/12 13:52, , 8F
原PO第一種方案的意思是「只能用一塊錢銅板買一顆糖」,還是說
07/12 13:52, 8F

07/12 13:53, , 9F
「多少錢買多少糖」?
07/12 13:53, 9F

07/12 13:54, , 10F
第二種方案是「只能用百元鈔票買身上的20%」,還是說
07/12 13:54, 10F

07/12 13:55, , 11F
「一百元可以買身上的20%」?
07/12 13:55, 11F

07/12 13:55, , 12F
問精確一點,這兩種方案的差別在於「一種只能用銅板,一種只能
07/12 13:55, 12F

07/12 13:56, , 13F
用鈔票」,還是和銅板鈔票無關,只在於「不同的購買方式」?
07/12 13:56, 13F

07/12 16:19, , 14F
2樓說的情況是 小明身上有X元 至於多少是鈔票多少是銅板
07/12 16:19, 14F

07/12 16:20, , 15F
則無規定 也就是例如小明身上有1020元 你可當作都是銅板
07/12 16:20, 15F

07/12 16:21, , 16F
也可當作有兩張百元鈔等等 這時如果都用銅板 那只能買1020
07/12 16:21, 16F

07/12 16:21, , 17F
如果先用520銅板買了糖果 接下來的500都用百元鈔
07/12 16:21, 17F

07/12 16:22, , 18F
這樣的確就是2樓說的最大 因為第一張百元鈔就能買104顆糖
07/12 16:22, 18F

07/12 16:23, , 19F
但如果是連有多少銅板跟多少鈔票都已規定好 那麼就是一樓
07/12 16:23, 19F

07/12 16:24, , 20F
差別就在於這X元內含多少鈔票銅板可否由解題者來決定
07/12 16:24, 20F

07/12 22:50, , 21F
真的耶 我完全沒發現方案二講的是"百元鈔票" 我完全看
07/12 22:50, 21F

07/12 22:50, , 22F
成"一百元"了 XD
07/12 22:50, 22F

07/15 08:34, , 23F
應該是出題者寫錯吧,看第一段,很明顯就是有多少銅板和鈔票
07/15 08:34, 23F

07/15 08:35, , 24F
都決定了,但這樣的話這題似乎沒有甚麼討論的空間
07/15 08:35, 24F
假設題目改成:X元可以任意換成百元鈔或一元銅板.那麼答案將會有什麼變化呢? 謝謝大家哦!(抱歉我題目出得不夠仔細.SORRY) ※ 編輯: hfs (36.229.7.220), 07/15/2014 21:33:33
文章代碼(AID): #1Jlza4VE (puzzle)
文章代碼(AID): #1Jlza4VE (puzzle)