Re: [問題]

看板Inference (推理遊戲)作者 (斷了線的風箏)時間22年前 (2002/11/15 12:50), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
※ 引述《annatto (少林武功蓋天下)》之銘言: : 請問可以說一下詳解嗎 一.若已知偽幣在n枚硬幣中, 將硬幣平均分為 A B C 三堆 (A B 數量相同) 秤 A/B , 若平衡, 則偽幣在C堆中, 重複(一) 假設 A>B , 將A平均分成 A1,A2,A3,A4, B亦分成 B1,B2,B3,B4 ( A1,B1數量相同, 依此類推) 秤 A1+A2+B3/B1+A3+N (N是正常的硬幣, 數量同A2) 若平衡, 則秤 B2/B4 若平衡, 則偽幣在 A4 中且較重, 到(二) 左重, 則偽幣在 B4 中且較輕, 到(二) 右重, 則偽幣在 B2 中且較輕, 到(二) 若左重, 則秤 A1/A2 若平衡, 則偽幣在 B1 中且較輕, 到(二) 左重, 則偽幣在 A1 中且較重, 到(二) 右重, 則偽幣在 A2 中且較重, 到(二) 若右重, 則秤 A3/N 若平衡, 則偽幣在 B3 中且較輕, 到(二) 左重, 則偽幣在 A3 中且較重, 到(二) 二.若已知偽幣在n枚硬幣中, 且已知其輕重, 則同(一)分成 A B C 三堆 秤 A/B , 若平衡, 則偽幣在C堆中, 重複(二) 若不平衡, 則視偽幣輕重判斷其在哪一堆中, 重複(二) -- 基本上這只是那個 "秤3次, 從12枚硬幣中找出一枚偽幣" 的加強版而已 hmm...這個解法還是有問題.... 3*3*3*8 = 216 只能秤到 108 個 可是另一個解法太難看懂了 先就這樣吧.... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.224.1.169 ※ 編輯: zephyr 來自: 61.224.1.17 (11/15 12:50)
文章代碼(AID): #zr7ql7T (Inference)
文章代碼(AID): #zr7ql7T (Inference)